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Abstract—A method based on the use of periodic B-splines and the integral transform technique is

proposed for the solution of quasi-steady periodic linear inverse heat conduction problems. Previous

approaches based on a finite Fourier series representation of the unknown surface condition are best

suited to smooth time variations of the surface condition. Now, using a B-spline representation, problems

with discontinuities or abrupt variations in the surface condition can be handled readily. The versatility

of the B-spline basis allows prior information concerning the general functional behavior of the surface
condition to be better incorporated into the model.

1. INTRODUCTION

THE DETERMINATION of a periodically varying surface
temperature or heat flux from discrete measurements
of the quasi-steady interior temperature has numerous
practical applications, including, among others, the
analysis of internal combustion engines [1, 2], predic-
tion of thermal contact conductance of periodically
contacting surfaces [3, 4] and periodic on—off heating
processes [5, 6]. Many of the quasi-steady periodic
inverse heat conduction problems (IHCP) arising
from such applications are linear and involve simple
geometries. For instance, experimental apparatus for
the measurement of thermal contact conductance
between quasi-steady periodically contacting surfaces
typically involve two one-dimensional rods which
contact at one end and are held at a known condition
at the opposite ends [3, 4]. Measurements are taken
at an interior location(s) in each rod to avoid disturb-
ing the surface properties under consideration. The
analysis requires the determination of the unknown
temperature and heat flux at each of the contacting
surfaces, ie. the solution of quasi-steady periodic
inverse heat conduction problems. Unless the thermal
properties vary significantly over the temperature
range of interest the THCP is linear. Wendland
investigated the heat transfer characteristics of a
closed system subjected to periodic conditions. Part
of the analysis involved the solution of a one-dimen-
sional quasi-steady periodic linear IHCP [7]. Some
investigations of internal combustion engines have
also involved the solution of a one-dimensional per-
iodic linear IHCP [1, 2].

The current analytical approaches for the solution
of such quasi-steady periodic linear IHCP make use
of a finite Fourier series for the representation of the
unknown surface condition [1, 2, 7-9]. We are
not aware of any numerical methods developed for
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periodic THCP. The analytical methods utilizing a
finite Fourier series basis are restricted to problems
involving a smooth variation in time of the surface
condition. However, there are applications such as
periodically contacting surfaces and periodic on—-off
heating processes which involve a discontinuous time
variation of surface temperature, hence the use of a
trigonometric basis for the estimated surface temper-
ature cannot accurately accommodate the actual
physical situation. Furthermore, it is important to
have as few parameters as possible in the model
representing the unknown surface condition in order
to minimize the effects of measurement errors, that
is, an efficient representation is desirable. In this
regard, a Fourier series representation is frequently
very inefficient. If the surface condition variation is
abrupt at any point in the time domain, a large
number of sine-cosine frequencies is required to
adequately model the situation. The resulting esti-
mates are much more sensitive to measurement errors
than necessary due to the inefficient Fourier series
representation.

In the present work, a versatile periodic B-spline
basis (periodic piecewise continuous polynomial basis)
for the unknown surface condition coupled with an
efficient integral transform technique and splitting-up
procedure is proposed. The approach is applicable to
quasi-steady periodic linear IHCP corresponding to
the direct problems solvable by the integral transform
approach advanced in ref. [10]. More specifically,
multidimensional problems in rectangular, cylindrical
or spherical geometry with heat generation and boun-
dary conditions of the first, second and/or third kind
can be treated. Arbitrary order (constant, linear,
cubic, etc.) for the polynomial pieces and continuity
requirements between each piece is available from
a single, unified formulation. The desired B-spline
representation is obtained by simply choosing a set
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NOMENCLATURE
a, b; Fourier series coefficients var(f) variance in f
B* vector of periodic B-spline basis X spatial coordinate
functions Xy position of the interior temperature
c* vector of periodic B-spline coefficients measurements
dfx,1) basis functions for the interior temper- 2,5 2,; defined by equations (A3).
ature
D* matrix of interior temperaturfe basis Greek symbols
functions at the measurement times, f; R
det(f) deterministic error in f B cigenvalues
é small number
E(-) expected or average value operator
f{t)  periodic surface temperature & measurement errors .
G matrix associated with autoregressive 0x,1) quam-steady periodic solution of equa-
errors tions (4) - .
k—1 order of the B-spline functions v; number of continuity requirements at
I number of intervals in the B-spline basis E=¢ ..
n number of normalized B-spline < interval 11?terface posxtu.:mS
functions p constant in a}xtgregress1ve error model
n* number of periodic B-spline functions, o star}dard deviation
n—v, =N, T period of f(1) ) -
N number of measured interior tempera- Y(x)  steady-state solution of equations (3).
tures T; )
Ny number of data points needed to define Superscripts
the periodic B-spline coefficients; T transpose of matrix
dimension of the periodic B-spline basis * associated  with  periodic  B-spline
q(t)  periodic surface heat flux functions _
r arbitrary constant in integral (A1) i estimated quantity
5 knot sequence defining B; (1) in integral ) measured quantity.
(AD)
SSE  sum of the squared estimated errors Subscripts
sto(f) stochastic error in [ 7 associated with the estimated surface
t time temperature |
T{x,t) interior temperature 4 associated with the estimated surface
u; independent random variable compon- heat flux ¢4
ent of autoregressive error model sto associated with the stochastic error
v arbitrary constant in integral (Al) u associated with the random variable u,

of input constants to the common formulation. The
periodic B-spline basis can accommodate discontin-
uities in the surface condition and derivative(s) as
required by a particular application, thus making the
approach very general. Also, when quantitative or
qualitative information is available concerning the
general functional form of the true surface condition,
the B-spline basis can incorporate such information
into the model to reduce the number of parameters
used. The more efficient B-spline representation is
then less sensitive to measurement errors, resulting
in an improved estimate of the unknown surface
condition. Approximate confidence bounds for the
estimated surface condition are readily developed
with the present formulation.

Before proceeding with the present approach, we
want to point out that analytical methods for linear
transient IHCP, ref. [11] for example, and numerical

schemes developed for non-linear transient IHCP,
such as refs. [12, 13}, could also be applied to the
problems we are considering, although we are not
aware of any investigators doing so. However, the
computations would start from some arbitrary initial
condition and proceed until the quasi-steady periodic
temperature distribution is established. Such an
approach requires more computer time than neces-
sary.

The versatility and accuracy of the present B-
spline/integral transform approach is illustrated in a
one-dimensional planar geometry for the case of an
unknown temperature at one surface. Other geometr-
ies and boundary conditions can be treated just as
easily. Approximate confidence bounds are developed
for the estimated surface condition for both uncorrel-
ated and correlated errors. Numerical comparisons
are made with the Fourier series approach.
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2. PREPARATION FOR THE INVERSE ANALYSIS

Basic to the inverse analysis is the development of
a rapidly converging solution for the equivalent direct
problem. To prepare such a basis, we consider a finite
slab subjected to zero temperature at the surface
x = 0 and a known periodically varying surface tem-
perature, f(z), at x = 1. The mathematical formulation
of the quasi-steady periodic direct problem is given
by

PT(x,1) _ 9T(x,1)

e 3 O0<x<1 {la)
T0,t) =0 (1b)

T(1,1) = f(1) (19

T(x,0) = T(x,1) (1d)

where 7 is the period of f{t). For simplicity, we use a
homogeneous boundary condition of the first kind at
x = 0 and choose to formulate the problem in terms
of a surface temperature, f{1), at x = 1. As previously
stated, the cases of boundary conditions of the second
or third kind at x =0 and a heat flux or ambient
temperature described by f(t) at x = 1 pose no diffi-
culty.

To obtain a fast-converging solution to this prob-
lem, T(x,t) is split-up in the following manner [14]

T(x,1) = (x)f(t) + 6(x,1) @

where ¥(x) is the solution to the following steady-
state problem

d;‘i{j‘) =0 O0<x<l (3a)
Y(0) =0 (3b)
Y1) =1 (3¢)

and 6(x, t) is the solution to the following quasi-steady
periodic problem with energy generation

2
%_W)d_g_:)zf?i‘%ﬁ) 0<x<1 (4a)
8(0,8) = 0 (4b)
8(1,8) =0 (4c)
8(x, 0) = O, 7). (4d)

The solution to the steady-state problem (3) is easily
obtained by direct integration. Equations (4) are
solved using the integral transform technique in the
manner described by Mikhailov [10]. The complete
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fast-converging direct solution to equations {1) is
obtained as
X — 2B, cos B,
m=1[1 —exp(— pr1)]
= —exp(— B201/©)
ﬁz

T(x, 1) = xf(t) + sin f,,x

+ f exp[ — Bt — )1 () dr
(1]

+ fexp[ — Bz + =) dt’} (5a}

where the eigenvalues, j,,, are given by
m=1,2,... (5b)

Knowing the temperature distribution, the surface
heat flux at x = 1, ¢(r), is computed from its definition

gt = =200 ©

B, = mm;

Having the solution to the direct problem established,
we consider the representation of the arbitrary per-
iodic surface temperature f(1).

There are several ways to represent an arbitrary
periodic function f() over a given interval depending
upon the properties of the function dictated by
the application of interest. Traditional approaches
utilizing a finite Fourier series representation for an
arbitrary periodic function are best suited to very
smooth periodic variations. Since the sine and cosine
basis functions are extremely smooth (i.e. infinitely
differentiable over the whole domain) and nonzero
over the entire time domain {except at a finite number
of points), numerous terms are required to represent
a periodic variation which is not particularly smooth
or even discontinuous. Even with a large number of
terms in the Fourier series, oscillations still appear
near discontinuities in the function or derivatives.
Therefore, difficulties are experienced when approxi-
mating an arbitrary periodic function with a finite
Fourier series.

Recently, the spline function approach has received
considerable attention since the above difficulties can
be alleviated by using less smooth (finitely differenti-
able) basis functions which are nonzero only locally.
With the spline function approach, excellent approxi-
mations to both smooth and abrupt variations are
obtained with a minimal number of basis functions.
Therefore, we prefer to use the periodic polynomial
spline function technique to represent f(t) as a periodic
piecewise continuous polynomial function of time,
Accordingly, the following definitions are introduced.

(k — 1) = the order of each polynomial

piece (7a)
) = the number of intervals

(polynomial pieces) in each

period of duration t (7b)
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& = the positions of the interval
interfaces or breakpoints; i = 1
tol+1

v; = the number of continuity
conditions (i.e. continuity of
function, first derivative, etc., required
at each interface position,
Epi=1tol+ 1.

(7o)

(7d)

Once k, I, &; and v; are selected, the problem becomes
one of selecting the proper basis functions, Bt),
such that the unknown surface temperature f(¢) is
represented in the form

fi) = Z Cij(t)~ (8)
Here, the proper basis functions, Bj(t), are called
normalized B-splines. An excellent treatment of B-
spline functions can be found in the monograph by
de Boor [15]. For a given sequence of k, &; and v;
with v; <k for all i, the number of B-splines, n, needed
for the representation of the function is determined
by the formula [15, theorem 1X.1]

n=k+ Y (k=) (9a)
i=2
K- Y, (9b)
i=2
i
=Y (k—v)+ v, {9¢)

1

fi

The (k — 1) order B-spline functions themselves are
defined by a stable, efficient recursion relationship
involving the next lower order B-splines [15, p. 131],
which allows us to compute the B/(t) functions. The
number of data points, N, needed to uniquely define
the coefficients c¢; in the representation given by
equation (8) is v, less than the number, n, of B-splines,
because the periodicity condition for the coefficients
provides an additional v, relations. With this con-
sideration we write

(10)

and the additional v; relationships among the
coefficients ¢; can be expressed as

Ny=n—-v,

Cho vy +j=Cj J=12,..,vq. (11)
Thus, N4 data points together with the relationship
given by equations (11) provide n relations for the
determination of n unknown coefficients.

For convenience in the subsequent analysis, we
prefer to contain the periodicity condition, equation
(11), implicitly in the B-splines and accordingly, intro-
duce periodic B-splines with the following definitions

j(t); j=0+ 1),

(vi + 2),...,(n —vy) (12a)
cF=c; j=12,...,(n—v) (12b)
n*=n—-v, =Ny (12¢)
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so that equations (8) and (11) are equivalent to

f)=3 B} (13)
i=1

Now the number of data points, N, required to define

the coefficients ¢} is the same as the number of

coefficients, n*.

3. ESTIMATION OF THE SURFACE
TEMPERATURE

Having established the formalism for the develop-
ment of a fast-converging direction solution and the
representation of the unknown surface temperature,
f(¢), using the periodic B-spline basis, we now focus
our attention to the formulation of the inverse analysis
concerned with estimating the unknown surface tem-
perature from discrete measurements taken at an
interior location after the quasi-steady state tempera-
ture distribution has been established. The formulation
is developed in the slab geometry.

Consider a slab of thickness unity, subjected to
zero temperature on the boundary x = 0 and to an
unknown periodically varying temperature, f(t), at
the surface x= 1. Let the unknown exact surface
temperature, f(t), be represented formally with a
periodic B-spline series in the form of equation (13)

n*

fity =Y c1BHO)

i=1

(14a)

where the proper values have been chosen for parame-
ters k, I, ¢; and v; defined by equations (7). Equation
(14a) is written more compactly in matrix notation

f=B*Tex, (14b)

Substitution of representation (14a) into the direct
solution (5) yields the corresponding exact interior
temperature distribution in the form

T(x,t) = i crdf (x,t) (15a)
=1

where d}(x,t) is defined by

Z —2B,cos B,
m=1[1 — exp(fa7)]
5 { — [1 — exp(— BA0)1B}()

i

+ J exp[ — Bi(t — t)]B¥(t)dr

0

d¥(x,t) = xB¥t) + sin f,,x

+ fexp[ — Bir +t — t)]BH({) dt’}. (15b)
0

The integrations appearing in equation (15b) involve
an exponential multiplied with a polynomial function,
B¥(t"), so the integrals can be evaluated exactly. In
the Appendix we develop an efficient recursion
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relationship for this purpose which is analogous to
the recursion relationship used to evaluate the B-
spline functions themselves. The unknown exact heat
flux at x = 1 is obtained from equations (6) and (15a)
as

q(t) = Z c* [-—"-'—%EQ—Q] (16)

i=1

Suppose N temperature measurements are taken
at a single interior location x, at times ¢, The exact
interior temperatures, T(x,,t;), at the measurement
position, x,, and at times, ¢;, are given by

T(xy,t) =T, = 3, crd¥(xy,t);

i=1

i=12...,N (17a)
which is expressed in the matrix form as
T = D*Te* (17b)
where
DY) = dXxy, 1) (17¢)

Suppose the actual measured data, T;, contains errors,
g;, such that

T=T+¢; i=12,...,N. (18)

For the moment, no assumptions are made concerning
the measurement errors.

Now consider the estimation of f(r) from the
measured data, 7, Generally, the true functional form
of f(t) is unknown; that is, n* and B}t) (which are
defined by &, [, £, and v;) are unknown in addition to
the parameters c}. To perform the inverse analysis, a
functional form must be assumed for the estimated
surface temperature, f{1), say, in the form

ity = Z 3140 (19a)
where suitable values are chosen for the parameters
k, I, £ and 9. The matrix form of equation (19a) is
preferred later in the analysis

J=8xTex

'l:he corresponding estimated interior temperature,
T(x,1), is obtained by substituting equation {19a) into
the direct solution (5) to yield

(19b)

Tix,t) = Z exd (x, 1) (20a)

where d7 (x, 1) is obtained by replacing B with B¥in
equation (15b). Analogous to equation (17b) we have

T=D*Te* (20b)

and the estimated heat flux is obtained from equation

(20a) as
40 = 2 [ a&(lz)]

The estimated interior temperatures, T,, at the
times, t;, of the measurements are related to the
measurements, T, by

21)

T=T+4 i=12..N (22a)

or expressed in matrix form
T=T+¢ (22b)
=D*Tex + ¢ (22¢)

where the quantities &; are the estimated errors defined
by

€IE(7:—T1)+EI; i=1’2’-'~!N‘ (23)

The coefficients ¢ appearing in equations (19) can
be determined by the method of least squares as now
described. The sum of the squared estimated errors,

SSE, is
SSE=¢"2 = (T — D*"e,"(T - D*"e%).  (29)

Minimization of the SSE with respect to the coeffic-
ients &F yields the following system of equations for
the determination of é*.

O*D*Te* = (D*T). (25)
The formal solution to system (25) is
& = (D*D*") 1 (D*T) (26)

and the estimated temperature, f(®), is obtained from
equations (19b) and (26) as

J=BTO*D*) {(D*T).

The quality of the estimated temperature obtained
from this expression depends on the order of the
piecewise polynomial, (k — 1), the number, [, and
positions, &, of intervals and the number of continuity
conditions chosen, ¥, Ideally, there should be just
enough flexibility in the chosen functional form for
F(1) so that the overall variation indicated by the data
can be accommodated without allowing fto follow the
measurement errors in the data. The most common
approach for selecting the basis for f in the THCP
literature, in the absence of prior knowledge about
the true functional form of f{t), has been to match
the r.ms. estimated error, \/(SSE/N), with known
statistical properties of the errors in the data [16].

First consider the standard case of uncorrelated
errors with zero means and known constant variance,
o?. The estimated or sample variance, 42, is a random
variable defined by

27

1 x

4 = NEE (28)
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On average

E(¢%) = o* (29)

where E(') is the expected value operator [17, p. 55].
Using §; to approximate ¢; and making use of equation
(24) we obtain

E(SSE) ~ No? (30)

where N is the number of measurements. That is
(average of SSE)/N is approximately equal to the
variance, ¢2. If N is large enough, a particular value
of the random variable SSE/N is usually close to its
approximate mean value 62 Therefore, a criterion for
selecting the basis for fis

J(SSE/N) > 0. (31)

A similar analysis applies in the case of correlated
errors. For example, consider steady-state first-order
autoregressive errors described by the model [18]

& = pg -y + Uy Eg = 0 (323)
Eu)=0 (32b)
0, i#j
o2
E(uu) = e f=j=1 32
() [ (320
oz, i=j#1

where u; is a random variable and p and g, are
considered known. In this case, criterion (31) is still
applicable provided ¢? is evaluated from

2

a,
2 ¥
o __,H__i,

Pt <1
1—p

33

In either case, an iterative process is needed in
order to determine the surface temperature, f{t), and
the surface heat flux, §(r). The procedure is as follows.

(1) Choose the spline parameters k, 9, & and I

(2) Determine the appropriate spline functions, B*,
and the interior basis functions, D*.

(3) Compute the coefficients ¢* from equation (26).

(4) Compute SSE from equation (24).

(5) Compare ,/(SSE/N) with the known value of
the standard deviation, g, of the measurements (given
or computed from equation (33)). Repeat the above
computations with a different choice of the spline
parameters until sufficient agreement is obtained
between /{SSE/N) and o as required by equation
31.

(6) Compute the estimated surface temperature,
f(v), from equation (27).

(7) Compute the estimated surface heat flux, §(t),
from equation (21).

In the present analysis, we choose to fix £ and v; and
require evenly spaced intervals, but alter [in the above
algorithm to satisfy equation (31). Note that the
estimation of { is nonlinear due to equation (31).

G. P. Frace and M. N. Ozigix

4. ERROR ANALYSIS

The characteristics of the estimated surface temper-
ature are now investigated. In the following approxi-
mate analysis, #* and the functions B¥(t) are consid-
ered fixed so the effect of criteria (31) on the estimated
temperature is being neglected. The measurement
errors are assumed to have zero means, but, no
assumptions are made concerning correlation or the
distribution of the errors yet. The mean value of [ is
obtained by taking the expected value of equation
(27) and noting that E(T) = T = D*Te*.

E(f) = B*(D*D*")" 1 (D*D*")e* (3%
and the variance becomes
o} = E[(f - E())7]

= B*T(D*D*")" ' D*E(ee")D*(D*D*")'B*  (35)
where E(-) is the expected value operator. Similar
expression can be obtained for the estimated heat
flux, 4(t), by replacing B¥(r) with — &d*(1,1)/0t in
equations (34) and (35). For the additional standard
assumptions of independent, constant variance errors

E(ee") = o1 (36a)

where I is the identity matrix and equation (35)

simplifies to
o} = o2 B*I(D*D*T) " Bx. (36b)

For the case of correlated errors given by equations
(32)

E(ee") = 6°G {(37a)
where the matrix G is defined by
1 p p
=" b (37b)
prop 1
and the variance becomes
a} — azﬁtT(ﬁ*ﬁ*T)—lﬁ*G l")*T(ﬁ*ﬁ*T)~1ﬁ*_
(37c)

Now we compare the estimated surface tempera-
ture, f, with the exact surface temperature, £ The
total error between the estimated and exact surface
temperatures is composed of two parts

j‘__f: [f;*T(ﬁ*f)wT)f i (ﬁ*D*T}

— B*Tle* + B*(D*D*")"1D*.  (38)

The first and second parts of this expression on the
right-hand side are characterized as the deterministic
stochastic errors, respectively

det (f) = [B*T(D*D*T)~ 1 (D*D*") — B*"]c* (39)
sto(f) = B*Y(D*D*T) ! D*e. 40y
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Therefore, equation (38) can be recast as

=1+ det(f) + sto(f).

These relations imply that the total error is composed
of two parts: the deterministic and the stochastic
error. When € = 0 the stochastic error is zero and the
total error is purely deterministic error. Also, the
average total error, E(f — f), becomes

E(f - f) = det(]) 42)

since E[sto(f)] vanishes. Therefore, det ( (1)) has two
interpretations

(41)

total error when exact measurements

det(f) = ; o -
\are mnput to the inverse analysis /
(43a)
and
average total error when inexact\
det(f) = | measurements are inpu (43b)

(Y — to th
‘J ’ - \lll\aﬂbul\;lll\allla al\- llll}ul LVoLiiv /.

inverse analysis

When f(¢) and /(1) have the same functional form, the
deterministic error is zero and the total error is purely
stochastic error. The variance of sto (f(¢)) is the same
as the variance of f(t). The above analysis can just as
easily be applied to the estimated surface heat flux,
4(t).

Now consider the development of confidence
bounds on the estimated surface quantities. First,
consider the standard assumptions of independent,
constant variance, normally distributed, zero mean
errors. We note from equation (27) that the estimated
surface temperature is a normally distributed variable
since it is a linear combination of the independent
normal measurements. Since the distribution of f(t)
is known to be normal, 99% confidence bounds are
readily obtained for f(t) as

Probability of {/ — det (f) — 2.5760; < f
<f—det(f) + 2.5760;} =99%  (44)

where o; is given by equation (36b). When the
deterministic error, det(f(t)), is neglected, equation
(44) reduces to

Probability of {f — 2.5765; < f

<[+ 257607} ~99%.  (45)

This relationship is used to determine the confidence
bounds for the surface temperature, i.e. namely, f is
computed from equation (27), o7 from equation (36b)
and 2.576 corresponds to 99% confidence bounds.
Now consider steady-state, first-order, autoregressive
correlated errors as described by equations (32) where
u; is normally distributed. In this case fis still normally
distributed but with variance given by equation (37¢).
The corresponding confidence bounds are also given
by equation (45) with 6; now evaluated from equation
(37¢). Confidence bounds on §(t), for independent or
correlated errors, are developed in the same manner.

The assumption of normally distributed errors in

o0
~J
W

the preceding two cases is used to determine that fis
also normally distributed. Once the distribution of f
is known to be normal, the confidence bounds can
UC e%‘laoumcu nUWeVef €ven ll ll’lC errors are not
exactly normal, f will be nearly normal anyway as a
consequence of the central limit theorem of statistics
[17, p. 167]. Basically, the theorem states that the
distribution of f will be more normal than that of ¢
and in the limit, as the number of measurements tends
to infinity, f becomes exactly normal (of course, if €
is normal then f'is exactly normal for any number of
measurements) [19]. Fortunately, normality in f is
achieved very quickly; f is significantly non-normal
only if the errors are extremely non-normal and only
a few measurements are taken [20, pp. 21-23]. That

is, relation (45) is not strongly dependent on the
We note that

frequently extremely non-normal errors can be trans-
formed to an approximately normal distribution with
constant variance and then the preceding anaiysis is
again applicable [20, p. 29]. In the event of extremely
non-normal errors which cannot be transformed to
near normality, distribution-free confidence bounds
may be developed [20, p. 73].

aqqnmnhnn of normal errors at all.

5. RESULTS AND DISCUSSION

To illustrate the application of the present method
of analysis on the use of periodic B-splines for the
solution of quasi-steady periodic linear IHCP, we
consider a plate of thickness unity subjected to zero
temperature at the surface x =0 and to a periodic
temperature variation in the form of a square-wave
at the surface x = 1. Suppose no prior information is
available concerning the shape of f{t). In this case,
one might as well use uniform cubic periodic B-splines
with full continuity conditions at the breakpoints as
the basis for f(r); that is, choose

k=4 (46a)
[ = a variable parameter (46b)
& = evenly spaced intervals (46c)
Vv; = 3 continuity requirements. (46d)

We first examine the deterministic error involved
in the estimation of the unknown surface temperature
by the inverse analysis. In order to study the effect of
the parameter [ on accuracy, 30 evenly spaced exact
temperatures at the centerline are chosen as the input
data to the inverse analysis. Figure 1 shows the actual
applied surface temperature in the form of a square-
wave and the exact temperature measurements taken
under quasi-steady conditions at the centerline
x = x; = 0.5 of the slab. Figure 2 shows the estimated
surface temperatures, computed using A* == 5, 15
and 25 spline intervals, compared to the exact surface
temperature. In view of equation (43a), the error in
the estimated results is purely deterministic. Clearly
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Exact

T(L,t)=f(t)

f(t) or T(0.5,1)
o

FI1G. 1. Applied square-wave periodic surface temperature;
exact interior temperature at x = 0.5; and 30 inexact simu-
lated measurements at x = 0.5 with ¢ =0.01.

as the number of spline intervals is increased, the
quality of the estimation improves.

Next we consider the effects of random measure-
ment errors on the estimated surface temperature.
Due to lack of space we consider only the standard
case of zero mean, constant variance, independent,
normally distributed errors. The expected size of the
stochastic error, sto (f }, 1s indicated by the normalized
standard deviation, a;/0 = 040 (f)/o. Figure 3 illu-
strates the effect of measurement errors on the esti-
mated surface temperature for I'=135, 15 and 25. As
the dimension (i.e. #* = [) of the basis for fis increased,
the estimated interior temperature more closely fol-
lows the measured data which contains error. There-
fore, the sensitivity to measurement errors increases,
as expected.

Now consider inexact input to the inverse analysis.
Thirty simulated inexact measurements at x; = 0.5
with ¢ = 0.01 are used for the analysis as shown in
Fig. 1. Since with increasing [, the deterministic error
decreases (Fig. 2) while the average stochastic error

d M. N. Ozisix

15 i
-
L
. |
N :
e |
i |
& i
10 i
; i
T 4 L )
Py T
A Pivtiivaiin bbb o
z : )
-
b
5 -
i
AT
‘} "i:s
o o
000 025 050 075 100
t

FI1G. 3. Illustration of average stochastic error for cubic
periodic B-splines with [ =5, 15 and 25 intervals and full
continuity conditions.

increases (Fig. 3), an optimal value of [, which will
minimize the total error, is expected to lic between
the extreme values of 5 and 25 intervals. According
to criteria (31) this optimal number, l:,p,, is approxi-
mately 16 and the corresponding estimated surface
temperature is shown in Fig. 4(a). The r.m.s. estimated
error, \/(SSE/N), calculated by taking [ = 16 is 0.0096
which differs from ¢ = 0.0100 by 4%. Also shown in
Fig. 4(a) are the 99% confidence bounds on f, based
on equation (45). The approximate confidence bounds
agree with the exact surface temperature except where
the deterministic error is large as expected from
equation (45).
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F1G. 2. Illustration of deterministic error for an applied square-wave surface temperature using cubic
periodic B-splines with ['= 5, 15 and 25 intervals and full continuity conditions.
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F1G. 4. Optimal estimated surface temperatures for an applied square-wave surface temperature and
inexact measured data using: (a) cubic periodic B-splines with full continuity requirements, (b) a Fourier
series representation and (¢} cubic periodic B-splines with discontinuities specified at t = 0.25 and 0.75.
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F1G. 5. Illustration of deterministic error for an applied square-wave surface temperature using a Fourier
series representation using 5, 15 and 25 terms.

We now compare the present method using a
periodic B-spline basis for f'to the use a Fourier series
basis in the form

Jio= i ajcos(ngf)
ji=0 T
+ ibjsin(gjn—t).

P - 47
Since a smooth B-spline representation has been
specified (continuity through the second derivative),
we expect the slightly more smooth Fourier series to
produce results similar to the B-spline results. Figures
5 and 6 show the results analogous to those contained
in Figs. 2 and 3, respectively, for the trigonometric

basis as given by equation (47) for 2m + 1) =5, 15
and 25 terms. Inspection of Figs. 2 and 5 indicates
the periodic B-spline approach is at least as good as
the Fourier series method in minimizing the deter-
ministic error. Note that the oscillations near the
discontinuities die out more quickly when periodic
B-splines are used since continuity in the higher order
derivatives is not required. Comparison of Figs. 3 and
6 shows that the average size of the stochastic error
is the same for both approaches. When data with
measurement error is used, the optimal estimated
surface temperatures, as selected by criteria (31), agree
also as shown by Figs. 4(a) and (b). Therefore, when
prior information about f{t) is not available and a
smooth, uniform periodic B-spline basis is specified,
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FIG. 6. Hlustration of average stochastic error for a Fourier
series representation using, 5, 15 and 25 terms.

the present approach can effectively reproduce the
Fourier series results.

Consider now a situation in which the true surface
temperature is known to have discontinuities. Sup-
pose that the surface temperature of Fig. 1 is the
result of a periodic on—off heating process for which
the duration of each process is known. In this case,
we incorporate this prior information into the B-
spline basis by requiring breakpoints at ¢ = 0.25 and
0.75 with v =0 continuity conditions. Figure 4{c}
shows the results when inexact data is input to
the inverse analysis with the selections f=4T=3,
& = {0,0.25,0.75,1.00} and ¥ = {4,0,0, 4} chosen to
best satisfy criteria (31). Clearly, applications with a
known discontinuous surface temperature are better
treated with a periodic B-spline basis than a Fourier
series approach, as shown by Figs. 4(b) and (c)
(Actually, criteria (31) indicated that even the current
model with £ = 4 and using only ['= 3 is too flexible
since it leads to a value of \/(SSE/N) of about 0.0068,
which is significantly less than ¢ = 0.0100, for these
selections of the parameters. In this case, the order of
the spline functions, (K — 1), should be reduced to
further optimize the estimation of f(t).)

Finally, we consider an example in which prior
information about the general shape of the unknown
surface temperature, f{t), can be used with a periodic
B-spline basis to achieve improved results over the
sine—cosine representation through a reduction in the
number of parameters in the model for f(¢). In Fig,
7(a) an arbitrary simulated periodic wall temperature
variation with an abrupt change is illustrated. Suppose
20 measurements with error level ¢ = 0.1 are taken
at x, = 0.05 as shown in Fig. 7(a). We base our

G. P. FLaca and M. N, Ozigik

selection of the B -spline representation of f{t) on the
following prior knowledge about f(t).

{1) A sharp temperature spike occurs between
approximately t = 0.45 and 0.55.
(2) Otherwise the temperature variation is smooth,

The above information motivates the following B-
spline basis

k=4 (48a)
I=5 (48b)
& = {0,0.20,0.45,0.55,0.75,1.00} (48¢)
% =1{3,3,2,2,3}. (48d)

Since sharp curvature is expected near ¢ = 0.45 and
at 0.55, continuity of the second derivatives is not
required in relations (48). The B-spline results are
shown in Fig. 7(b) while the Fourier series resuits are
given in Fig. 7(c). The dimension of the B-spline basis
given by equations (48) is Ny =#A* =7 while the
number of terms required by basis given by equation
(47) to achieve the same degree of fit in terms of the
SSE is 13. Since the Fourier representation is very
smooth, more terms were required to fit the near
discontinuity at t = 0.5 than the less smooth B-spline
basis. The increased sensitivity of the Fourier series
approach is evident from the broader confidence
bounds in Fig. 7(c). Clearly the B-spline results are
better than the Fourier series results since prior
information about f(¢) has been incorporated into the
B-spline representation of f(t) to reduce the number
of parameters.

6. CONCLUSIONS

The periodic B-spline/integral transform approach
has been developed to solve linear inverse heat
conduction problems involving a periodically varying
unknown surface temperature at one of the boundary
surfaces. Problems involving discontinuities or abrupt
variations in the surface temperature can readily
be handled with the present method. When some
information is available regarding the general func-
tional form of the applied surface temperature, such
information can be incorporated in the B-spline basis
to reduce sensitivity to measurement errors. The
method is also capable of handling smooth variations
in the applied surface temperature as effectively as
the Fourier series approach.
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APPENDIX

The following type of integral appears twice in equation
(15b)

J’Z expr(t — v)]B, () dt (A1)

(i}

where (k — 1} is the order of the spline functions. Let s denote
the knot sequence defining the B-splines [15, pp. 119, 321].
Since B; (1) is a different polynomial on each interval
(5i+j- 1 Sie b J = 1,2,..., k, split up integral (A1) as

& indtz 84 8)
% r exp [t — v)] B; \(t)dt (A2)
J=ldmaxty,s sy .g)
where ¢ is a small number. Define
Zy; Eminlty, 54 ;— 9) (A3a)
Zy; = MAX(ly, 5 4 ;- ) {A3b)
and consider each integral
24
J’ exp{rlt — v)] B; () dt (Ad)

1

appearing in integral (A2) separately. Since B, () is a
continuous function for z,; <t < z,, integral (A4) can be
integrated by parts as

223

Lexp[r(t — 0)] Byl

21

2}
—f Teplre — D1 Bul0dt. (A9

21y
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The derivative of the B-spline is evaluated from the recursion
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formula [15, p.139]

Hence

i

J ‘exp[r(x — )] Bydryde = ;_1“ {CXP [t — )] B; (1)

B,-,k(t)=(k—1)[ Bis =) WB"“-““(')] (A6) f ’exp[r(z-—u)]B,-,,(t)dt

Sivk-1" 8 Sien— 54 "]

min(z;5.8,, ~ 8)

!
= —exp[rit —v)]
r max(zy;.8)

if min(z;,s; ., — 6) > max(z,;,s)

21

k—1 234 =0 otherwise.
f exp[rit ~ )] B, - ,(n)dt

Sivrk-1 7S 21

zy;

METHODE B-SPLINE PERIODIQUE POUR LE PROBLEME INVERSE DE LA
CONDUCTION PERIODIQUE ETABLIE

Résumé—Une approche basée sur ['utilisation de la méthode B-spline et sur la transformée intégrale est

proposée pour résoudre les problémes linéaires inverses de la conduction thermique périodique établie. Les

approches précédentes basées sur une représentation en série finie de Fourier de la condition inconnue sur

la surface conviennent mieux aux variations lentes. Mais en utilisant une représentation B-spline, des

problémes avec des discontinuités ou des variations rapides de la condition 4 1a surface peuvent étre traités.

La souplesse de la base B-spline fournit une information concernant le comportement fonctionnel général
de la condition de surface pour étre mieux introduite dans le modéle.

PERIODISCHES B-SPLINE-VERFAHREN ALS GRUNDLAGE ZUR BESCHREIBUNG
QUASISTATIONARER, PERIODISCHER, INVERSER WARMELEITVORGANGE

Zusammenfassung—Es wird eine Methode zur Losung quasistationirer, periodischer, linearer, inverser
Wirmeleitvorginge mit Hilfe periodischer B-Splines und der Integral-Transformationstechnik vorge-
schlagen. Ein frither vorgestelltes Verfahren, bei dem die unbekannte Oberflichenbedingung mit Hilfe einer
Fourier-Reihe dargestellt wurde, eignet sich sehr gut, um zeitliche Anderungen der Oberflichenbedingung
anzupassen. Durch Verwenden der B-Spline-Methode kénnen jetzt auch Unstetigkeiten oder plétzliche
Anderungen der Oberflichenbedingung ohne Schwierigkeiten behandelt werden. Die Beweglichkeit des B-
Spline-Verfahrens erlaubt es, mehr Vorabinformation (beziiglich des aligemeinen Verhalitens der Ober-
flichenbedingung) besser in das Model! zu integrieren.

MEPMOJMYECKUA B-CIUTAFH U1 PEMIEHHA KBASUCTALIMOHAPHbBIX
NEPHOAUYECKHUX OBPATHBIX 3AZKAY TEILIOMPOBOJHOCTU

Amnorauus—MeTon, OCHOBaHHBIA Ha HCMOJIL30BAaHMH nEpHOAMMecKMX B-cruafiHoB M MeTonHke MHTEr-
panbHoro npeobpa3zopanus, NpemaraeTca ANA PelicHHs KBAa3NCTAUMOHAPHBIX NEPHOIHYECKHMX JIMHEH-
HbIX ofpaTHBIX 3agay TennonpoBodHOCTH. Panee npumensBiHecs nogxonbl GasupyroTes Ha
NpEeACTaBJICHNE HEH3BECTHRIX YCIOBHH Ha MOBEPXHOCTH B BHJE KOHEYHOTo pana Pypbe, XOpomo CooT-
BETCTBYIOT MOHOTOHHOMY H3MEHEHHIO BO BpEMeHHM ycnosmii Ha nosepxsocTH. HMcnonbsosanme B-
CRAafHOB AaeT BO3IMOXHOCTL Hp(EKTHBHO PEINATh 3a4a4M C PASPHIBHBIMH M PE3XO HIMEHSIOLIMMHUCH
YCIOBHAMH Ha NOBEPXHOCTH. YHHBepcalbHOCTh B-cnmalinos nossonser Gonee anexsaTtHO MoOJenH
HCHONBL30BaTh HHGOPMALHIO 00 YCJIOBHAX HA HOBEPXHOCTH.

The recursion formula (A7) is started from the values

Equations {A7) and (AB) provide a complete recursion
k—1 235 relation for the evaluation of integral (Ad). Expression (A2}
+ —————J. exp[r(t — )] B; 4+ 4. -0 dt}. (A7) is then used to compute integral (Al).

Sivx S+



