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Abstract-A method based on the use of periodic B-splines and the integral transform technique is 
proposed for the solution of quasi-steady periodic linear inverse heat conduction problems. Previous 
approaches based on a finite Fourier series representation of the unknown surface condition are best 
suited to smooth time variations of the surface condition. Now, using a B-spline representation, problems 
with discontinuities or abrupt variations in the surface condition can be handled readily. The versatility 
of the B-spline basis allows prior information concerning the general functional behavior of the surface 

condition to be better incorporated into the model. 

1. INTRODUCTION 

THE DETERMINATION of a periodically varying surface 
temperature or heat flux from discrete measurements 
of the quasi-steady interior temperature has numerous 
practical applications, including, among others, the 

analysis of internal combustion engines [l, 21, predic- 
tion of thermal contact conductance of periodically 
contacting surfaces [3,4] and periodic on-off heating 
processes [S, 63. Many of the quasi-steady periodic 
inverse heat conduction problems (IHCP) arising 
from such applications are linear and involve simple 
geometries. For instance, experimental apparatus for 
the measurement of thermal contact conductance 
between quasi-steady periodically contacting surfaces 
typically involve two one-dimensional rods which 
contact at one end and are held at a known condition 
at the opposite ends [3, 41. Measurements are taken 
at an interior location(s) in each rod to avoid disturb- 
ing the surface properties under consideration. The 
analysis requires the determination of the unknown 
temperature and heat flux at each of the contacting 
surfaces, i.e. the solution of quasi-steady periodic 
inverse heat conduction problems. Unless the thermal 
properties vary significantly over the temperature 
range of interest the IHCP is linear. Wendland 
investigated the heat transfer characteristics of a 
closed system subjected to periodic conditions. Part 
of the analysis involved the solution of a one-dimen- 
sional quasi-steady periodic linear IHCP [7]. Some 
investigations of internal combustion engines have 
also involved the solution of a one-dimensional per- 
iodic linear IHCP Cl, 23. 

The current analytical approaches for the solution 
of such quasi-steady periodic linear IHCP make use 
of a finite Fourier series for the representation of the 
unknown surface condition [l, 2, 7-91. We are 
not aware of any numerical methods developed for 

periodic IHCP. The analytical methods utilizing a 
finite Fourier series basis are restricted to problems 
involving a smooth variation in time of the surface 

condition. However, there are applications such as 
periodically contacting surfaces and periodic on-off 
heating processes which involve a discontinuous time 
variation of surface temperature, hence the use of a 
trigonometric basis for the estimated surface temper- 
ature cannot accurately accommodate the actual 
physical situation. Furthermore, it is important to 
have as few parameters as possible in the model 
representing the unknown surface condition in order 
to minimize the effects of measurement errors, that 
is, an efficient representation is desirable. In this 
regard, a Fourier series representation is frequently 
very inefficient. If the surface condition variation is 
abrupt at any point in the time domain, a large 
number of sine-cosine frequencies is required to 
adequately model the situation. The resulting esti- 
mates are much more sensitive to measurement errors 
than necessary due to the inefficient Fourier series 
representation. 

In the present work, a versatile periodic B-spline 
basis (periodic piecewise continuous polynomial basis) 
for the unknown surface condition coupled with an 
efficient integral transform technique and splitting-up 
procedure is proposed. The approach is applicable to 
quasi-steady periodic linear IHCP corresponding to 
the direct problems solvable by the integral transform 
approach advanced in ref. [to]. More specifically, 

multidimensional problems in rectangular, cylindrical 
or spherical geometry with heat generation and boun- 
dary conditions of the first, second and/or third kind 
can be treated. Arbitrary order (constant, linear, 
cubic, etc.) for the polynomial pieces and continuity 
requirements between each piece is available from 
a single, unified formulation. The desired B-spline 
representation is obtained by simply choosing a set 
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NOMENCLATURE 

aj, hj Fourier series coefficients 
B* vector of periodic B-spline basis 

functions 
c* vector of periodic B-spline coefficients 
d&x, f) basis functions for the interior temper- 

ature 
D* matrix of interior tem~rature basis 

functions at the measurement times, ti 
det (f) deterministic error in j 
E( .) expected or average value operator 
f(t) periodic surface temperature 
G matrix associated with autoregressive 

errors 
k - 1 order of the B-spline functions 
1 number ofintervals in the B-spline basis 
n number of normalized B-spline 

functions 
n* number of periodic B-spline functions, 

n-v1 =N, 
N number of measured interior tempera- 

tures T 

N, number of data points needed to define 
the periodic B-spline coefficients; 
dimension of the periodic B-spline basis 

4(t) periodic surface heat flux 
I arbitrary constant in integral (Al) 
S knot sequence defining B,, t(t) in integral 

(Al) 
SSE sum of the squared estimated errors 
sto (f) stochastic error in 3 
t time 
T(x, t) interior temperature 

% independent random variable compon- 
ent of autoregressive error model 

1’ arbitrary constant in integral (Al) 

var (3) variance in f 
X spatial coordinate 

Xl position of the interior temperature 
measurements 

zIj, zZj defined by equations (A3). 

Greek symbols 

Bin eigenvalues 
6 small number 

&i measurement errors 
6(x, t) quasi-steady periodic solution of equa- 

tions (4) 

vi number of continuity requirements at 
t = 5i 

<i interval interface positions 

P constant in autoregressive error model 
d standard deviation 

k) 

period of f(t) 
steady-state solution of equations (3). 

Superscripts 
T transpose of matrix 
* associated with periodic B-spline 

functions 
estimated quantity 
measured quantity. 

Subscripts 

f associated with the estimated surface 
temperature 3 

4 associated with the estimated surface 
heat flux 4 

sto associated with the stochastic error 
u associated with the random variable up 

of input constants to the common formulation. The 
periodic B-spline basis can accommodate discontin- 
uities in the surface condition and derivative(s) as 
required by a particular application, thus making the 
approach very general. Also, when quantitative or 
qualitative information is available concerning the 
general functional form of the true surface condition, 
the B-spline basis can incorporate such information 
into the model to reduce the number of parameters 
used. The more efficient B-spline representation is 
then less sensitive to measurement errors, resulting 
in an improved estimate of the unknown surface 
condition. Approximate confidence bounds for the 
estimated surface condition are readily developed 
with the present formulation. 

Before proceeding with the present approach, we 
want to point out that analytical methods for linear 
transient IHCP, ref. [ 1 I] for example, and numerical 

schemes developed for non-linear transient IHCP, 
such as refs. [ 12, 131, could also be applied to the 
problems we are considering, although we are not 
aware of any investigators doing so. However, the 
computations would start from some arbitrary initial 
condition and proceed until the quasi-steady periodic 
temperature distribution is established. Such an 
approach requires more computer time than neces- 
sary. 

The versatility and accuracy of the present B- 
spline/integral transform approach is illustrated in a 
one-dimensional planar geometry for the case of an 
unknown temperature at one surface. Other geometr- 
ies and boundary conditions can be treated just as 
easily. Approximate confidence bounds are developed 
for the estimated surface condition for both uncorrel- 
ated and correlated errors. Numerical comparisons 
are made with the Fourier series approach. 
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2. PREPARATION FOR THE INVERSE ANALYSIS 

Basic to the inverse analysis is the development of 
a rapidly converging solution for the equivalent direct 
problem. To prepare such a basis, we consider a finite 
slab subjected to zero temperature at the surface 
x = 0 and a known periodically varying surface tem- 
perature&), at x = 1. The mathematical formulation 
of the quasi-steady periodic direct problem is given 

by 

T(0, t) = 0 W 

w, t) --f(t) (14 

qx, 0) = T(x, t) (14 

where r is the period off(t). For simplicity, we use a 
homogeneous boundary condition of the first kind at 
x = 0 and choose to formulate the problem in terms 
of a surface temperature, f(t), at x = 1. As previously 
stated, the cases of boundary conditions of the second 
or third kind at x = 0 and a heat flux or ambient 
temperature described by f(t) at x = 1 pose no diffi- 
culty. 

To obtain a fast-converging solution to this prob- 
lem, i”(x, t) is split-up in the following manner [14] 

T(x, r) = W If(r) f 0 (x, t) (2) 

where t&x) is the solution to the following steady- 
state problem 

WfO 
dx’ 

O<x<l (3a) 

4+(O) = 0 (3b) 

VW) = 1 (3c) 

and 0(x, t) is the solution to the following quasi-steady 
periodic problem with energy generation 

0 < x < 1 (4a) 

e(O,t) = 0 Pb) 

e(l, t) = 0 (4c) 

efx,o) = e(x,T). (44 

The solution to the steady-state problem (3) is easily 
obtained by direct integration. Equations (4) are 
solved using the integral transform technique in the 
manner described by Mikhailov [lo]. The complete 

fast-converging direct solution to equations (1) is 
obtained as 

T(x, t) = xf(t) + 2 - wm cos /%I 
m= 1 Cl - exp( - Biz)] 

sin /I&x 

X 

i 

- Cl - exp ( - B3lfW 
8zt 

+ r exp[ - pz(t - t’)]f(t’)dt’ 
JO 

+ 
r 

exp [ - Pf(z + t - t’)]f(t’)dt’ ($4 
* 

where the eigenvalues, /&,, are given by 

p, = mn; m = 1,2,... (5b) 

Knowing the temperature distribution, the surface 
heat flux at x = 1, q(t), is computed from its definition 

Having the solution to the direct problem established, 
we consider the representation of the arbitrary per- 
iodic surface temperature S(t). 

There are several ways to represent an arbitrary 
periodic functionf(t) over a given interval depending 
upon the properties of the function dictated by 
the application of interest. Traditional approaches 
utilizing a finite Fourier series representation for an 
arbitrary periodic function are best suited to very 
smooth periodic variations. Since the sine and cosine 
basis functions are extremely smooth (i.e. infinitely 
differentiable over the whole domain) and nonzero 
over the entire time domain (except at a finite number 
of points), numerous terms are required to represent 
a periodic variation which is not particularly smooth 
or even discontinuous. Even with a large number of 
terms in the Fourier series, oscillations still appear 
near discontinuities in the function or derivatives. 
Therefore, difficulties are experienced when approxi- 
mating an arbitrary periodic function with a finite 
Fourier series. 

Recently, the spline function approach has received 
considerable attention since the above difficulties can 
be alleviated by using less smooth (finitely differenti- 
able) basis functions which are nonzero only locally. 
With the spline function approach, excellent approxi- 
mations to both smooth and abrupt variations are 
obtained with a minimal number of basis functions. 
Therefore, we prefer to use the periodic polynomial 
spline function technique to representf(t) as a periodic 
piecewise continuous polynomial function of time. 
Accordingly, the following definitions are introduced. 

(k - 1) zz the order of each polynomial 
piece 

1 = the number of intervals 
(polynomial pieces) in each 
period of duration r 

Va) 

(7b) 
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5i 

vi 

= the positions of the interval 
interfaces or breakpoints; i = 1 
to1+1 (7c) 

= the number of continuity 
conditions (i.e. continuity of 
function, first derivative, etc., required 
at each interface position, 
gi; i = 1 to 1 + 1. (7d) 

Once k, 1, ci and vi are selected, the problem becomes 
one of selecting the proper basis functions, Bj(t), 
such that the unknown surface temperature f(t) is 
represented in the form 

j-(t) = i cjBj(t). (8) 
j=l 

Here, the proper basis functions, B,(t), are called 
normalized B-splines. An excellent treatment of B- 
spline functions can be found in the monograph by 
de Boor [15]. For a given sequence of k, ti and vi 
with vi I k for all i, the number of B-splines, n, needed 
for the representation of the function is determined 
by the formula [15, theorem IX.11 

TV = k -t i (k - vi) 
i=2 

(94 

= kl - t vi 
i=2 

(W 

= i$l (k - Vi) + “1. (9c) 

The (k - 1) order B-spline functions themselves are 
defined by a stable, efficient recursion relationship 
involving the next lower order B-splines [15, p. 13 11, 
which allows us to compute the B,(t) functions. The 
number of data points, N,, needed to uniquely define 
the coefficients cj in the representation given by 
equation (8) is vi less than the number, n, of B-splines, 

because the periodicity condition for the coefficients 
provides an additional vi relations. With this con- 

sideration we write 

N, = n - v, (10) 

and the additional vi relationships among the 

coefficients cj can be expressed as 

C” - v,+jccj; i= 1,2 )..., vi. (11) 

Thus, N, data points together with the relationship 
given by equations (11) provide n relations for the 
determination of n unknown coefficients. 

For convenience in the subsequent analysis, we 
prefer to contain the periodicity condition, equation 
(1 l), implicitly in the B-splines and accordingly, intro- 
duce periodic B-splines with the following definitions 

B;(t) = 
B,(t) + B,_,,+,(t); 

i, 

j= 1,2 ,..., vi 

jtth j = (VI + 11, 

(vl + 2),...,(n - vl) (124 
cf = cj; j = 1,2 ,..., (n - v,) (12b) 

n*=n-v, =N d (124 

so that equations (8) and (11) are equivalent to 

f(t) = i c;B;(t). (13) 
i=* 

Now the number of data points, N,, required to define 

the coefficients cf is the same as the number of 
coefficients. n*. 

3. ESTIMATION OF THE SURFACE 
TEMPERATURE 

Having established the formalism for the develop- 
ment of a fast-converging direction solution and the 
representation of the unknown surface temperature, 

f(t), using the periodic B-spline basis, we now focus 
our attention to the formulation of the inverse analysis 
concerned with estimating the unknown surface tem- 
perature from discrete measurements taken at an 

interior location after the quasi-steady state tempera- 
ture distribution has been established. The formulation 
is developed in the slab geometry. 

Consider a slab of thickness unity, subjected to 
zero temperature on the boundary x = 0 and to an 

unknown periodically varying temperature, f(t), at 
the surface x= 1. Let the unknown exact surface 
temperature, f(t), be represented formally with a 
periodic B-spline series in the form of equation (13) 

f(t) = 2 cfBf(t) 
j=l 

(14a) 

where the proper values have been chosen for parame- 
ters k, 1, ti and vi defined by equations (7). Equation 
(14a) is written more compactly in matrix notation 

f = B*Tc*. (1W 

Substitution of representation (14a) into the direct 
solution (5) yields the corresponding exact interior 
temperature distribution in the form 

T(x, t) = 5 cfdf (x, t) 
j=l 

(154 

where df(x, t) is defined by 

dj*(x,t) E xBf(t) + f - 2BmcosBm 
,=i[l - exp(BS)l 

sin b,x 

x 
- [l - exp( - Bir)lBj*(t) 

Pl?l 

+ 
s 

‘exp [: - fli(t - t’)]By(t’)dt’ 
0 

+ 
s 

exp[ - Pi(r + t - t’)]Bj*(t’)dt’ (1W 
0 

The integrations appearing in equation (15b) involve 
an exponential multiplied with a polynomial function, 
Bf(t’), so the integrals can be evaluated exactly. In 
the Appendix we develop an efficient recursion 
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relationship for this purpose which is analogous to and the estimated heat flux is obtained from equation 
the recursion relationship used to evaluate the B- (20a) as 
spline functions themselves. The unknown exact heat 
flux at x = 1 is obtained from equations (6) and (15a) (21) 
as 

Suppose N temperature measurements are taken 
at a single interior location x1 at times fi- The exact 
interior tem~ratures, 7(x,, ti), at the measurement 
position, xi, and at times, ti, are given by 

T(x,, ti) = T = 5 cfd; (xl, ti); 
j=l 

i= 1,2,...,N (17a) 

which is expressed in the matrix form as 

T = D*Te* (17b) 

where 

(D*)j; z dj*(xl, ti). (17c) 

Suppose the actual measured data, E, contains errors, 
si, such that 

z=T+&i; i = 1,2,. . . , N. (18) 

For the moment, no assumptions are made concerning 
the measurement errors. 

Now consider the estimation of f(t) from the 
measured data, R. Generally, the true functional form 
off(t) is unknown; that is, n* and B,*(t) (which are 
defined by k, I, 6 and vi) are unknown in addition to 
the parameters CT. To perform the inverse analysis, a 
functional form must be assumed for the estimated 
surface temperature,!(t), say, in the form 

i* 
f(t) = 1 cp,yc) 

j-1 
(194 

where suitable values are chosen for the parameters 
L, c & and Pi. Th e matrix form of equation (19a) is 
preferred later in the analysis 

The corresponding estimated interior tem~rature, 
?(x, t), is obtained by substituting equation (19a) into 
the direct solution (5) to yield 

where 27 (x, t) is obtained by replacing BF with & in 
equation (15b). Analogous to equation (17b) we have 

(2Ob) 

The estimated interior temperatures, ?‘,, at the 
times, ti, of the measurements are related to the 
measurements, $, by 

?$=$+&; , ,...,N i=l2 (22a) 

or expressed in matrix form 

T=T+e (22b) 

= fi*=e* + & (224 

where the quantities bi are the estimated errors defined 

by 

$ = (Ti - -?J + Ei; i=12 N. 9 ,..., (23) 

The coefficients 27 appearing in equations (19) can 
be determined by the method of least squares as now 
described. The sum of the squared estimated errors, 
SSE, is 

SSE = $=Z = (T - B *Te*)T(T - fi*T2*). (24) 

Minimization of the SSE with respect to the coeffic- 
ients &y yields the following system of equations for 
the determination of f*. 

(B*~*‘F* = @*T). 

The formal solution to system (25) is 

(25) 

e* = (fi*fj*T)- ’ @*Q (26) 

and the estimated tem~rature, 3(t), is obtained from 
equations (19b) and (26) as 

3= ~*=(~*~*=~-l(~*T). (27) 

The quality of the estimated temperature obtained 
from this expression depends on the order of the 
piecewise polynomial, (E - l), the number, t and 
positions, e, of intervals and the number of continuity 
conditions chosen, Oi. Ideally, there should be just 
enough flexibility in the chosen functional form for 
f(t) so that the overall variation indicated by the data 
can be accommodated without allowingJto follow the 
measurement errors in the data. The most common 
approach for selecting the basis for fin the IHCP 
literature, in the absence of prior knowledge about 
the true functional form of f(t), has been to match 
the r.m.s. estimated error, ,/(SSE/N), with known 
statistical properties of the errors in the data [16]. 

First consider the standard case of uncorrelated 
errors with zero means and known constant variance, 
a’. The estimated or sample variance, 8’, is a random 
variable defined by 

82 = $s=e. (28) 
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On average 

l?(P) = 02 (29) 

where E(.) is the expected value operator [17, p. 551. 
Using di to approximate ai and making use of equation 
(24) we obtain 

@SE) LT No2 (30) 

where N is the number of measurements. That is 
(average of SSE)/N is approximately equal to the 
variance, c?. If N is large enough, a particular value 
of the random variable SSEjN is usually close to its 
approximate mean value a’. Therefore, a criterion for 
selecting the basis for 1 is 

J(SSEIN) N 0. (31) 

A similar analysis applies in the case of correlated 
errors. For example, consider steady-state first-order 
autoregressive errors described by the model [18] 

&i = p&i - 1 + I$; Eg = 0 (SW 

E(q) = 0 (32bj 

9 i#j 

E(UiUj) = --_d-- 
i 1 - p2’ 

i=j=l (32~) 

2 
CT", i=j#l 

where ui is a random variable and p and B, are 
considered known. In this case, criterion (31) is still 
applicable provided a2 is evaluated from 

(33) 

In either case, an iterative process is needed in 
order to determine the surface temperature,~r), and 
the surface heat flux, e(t). The procedure is as follows. 

(1) Choose the spline parameters L, 3, & and 1 
(2) Determine the appropriate spline functions, 8*, 

and the interior basis functions, B*. 
(3) Compute the coefficients C* from equation (26). 
(4) Compute SSE from equation (24). 
(5) Compare J(SSE/N) with the known value of 

the standard deviation, b, of the measurements (given 
or computed from equation (33)). Repeat the above 
computations with a different choice of the sphne 
parameters until sufficient agreement is obtained 
between ~(SSE/~) and 5 as required by equation 

(31). 
(6) Compute the estimated surface temperature, 

3(t), from equation (27). 
(7) Compute the estimated surface heat flux, Q(t), 

from equation (21). 

In the present analysis, we choose to fix & and ci and 
require evenly spaced intervals, but alter fin the above 
algorithm to satisfy equation (31). Note that the 
estimation offis nonlinear due to equation (31). 

4. ERROR ANALYSIS 

The characteristics of the estimated surface temper- 
ature are now investigated. In the following approxi- 
mate analysis, ri* and the functions &(t) are consid- 
ered fixed so the effect of criteria (31) on the estimated 
temperature is being neglected. The measurement 
errors are assumed to have zero means, but, no 
assumptions are made concerning correlation or the 
distribution of the errors yet. The mean value off is 
obtained by taking the expected value of equation 
(27) and noting that E(T) = T = D+Tc*. 

43) = jj*T@*fi*T)- 1 (@D*T)@ (34) 

and the variance becomes 

=; jj*T(fi*fj*~)- ~fi*~(EE~)fi*T(fi*fi*T)- ijj* (35) 

where E(.) is the expected value operator. Similar 
expression can be obtained for the estimated heat 
flux, Q(t), by replacing &T(t) with - @(l, t)/& in 
equations (34) and (35). For the additional standard 
assumptions of independent, constant variance errors 

4&&f) = a21 (36a) 

where I is the identity matrix and equation (35) 
simplifies to 

+ 5Zfj*T@*fi*')- I&+. 
WM 

For the case of correlated errors given by equations 

(32) 

E(&&T) = o*c (37a) 

where the matrix G is defined by 

r 1 p p2 . . 

G= ’ 
1 p . . . 

! i p2 p 1 .I. 
(3W 

. . . . . . 

and the variance becomes 

aj =.2,,T(B*~*T)-I~*G~*T(s*i)*T)-ll?j*. 

(37c) 

Now we compare the estimated surface tempera- 
ture, f; with the exact surface temperature, I: The 
total error between the estimated and exact surface 
temperatures is composed of two parts 

f-f= [jj*T(jj*fi*‘)-‘($j*D*T) 
_ B*T]@ + ~TQ~*~*T)-I fi*& (38) 

The first and second parts of this expression on the 
right-hand side are characterized as the deterministic 
stochastic errors, respectively 

det (3) = [B*T(D*fi*~- 1 (fi*D*T) - B*"]c* (39) 

sto(3) E B*T(fl*B*T)-’ a,*&. (40) 
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Therefore, equation (38) can be recast as 

p = f + det (3) + sto (3). (41) 

These relations imply that the total error is composed 
of two parts: the deterministic and the stochastic 
error. When E = 0 the stochastic error is zero and the 
total error is purely deterministic error. Also, the 
average total error, E (3 - f), becomes 

E(f - f) = det (3) (42) 

since E[sto(f)] vanishes. Therefore, det (f(t)) has two 
interpretations 

det (3) = 
total error when exact measurements 
are input to the inverse analysis > 

(434 

and 

/ 

average total error when inexact 
det(f) = measurements are input to the 

inverse analysis i 
(43b) 

Whenf(t) and?(t) have the same functional form, the 
deterministic error is zero and the total error is purely 
stochastic error. The variance of sto f(t)) is the same 
as the variance off(t). The above analysis can just as 
easily be applied to the estimated surface heat flux, 

4(t). 
Now consider the development of confidence 

bounds on the estimated surface quantities. First, 
consider the standard assumptions of independent, 
constant variance, normally distributed, zero mean 
errors. We note from equation (27) that the estimated 
surface temperature is a normally distributed variable 
since it is a linear combination of the independent 
normal measurements. Since the distribution of f(t) 
is known to be normal, 99% confidence bounds are 
readily obtained for f(t) as 

Probability of {f - det @) - 2.576~~ < f 

< f- det (3) + 2.5760~) = 99% (44) 

where UJ is given by equation (36b). When the 
deterministic error, det (f(t)), is neglected, equation 
(44) reduces to 

Probability of u - 2.576~~ < f 

<3+ 2.576~~) = 99%. (45) 

This relationship is used to determine the confidence 
bounds for the surface temperature, i.e. namely,fis 
computed from equation (27), a? from equation (36b) 
and 2.576 corresponds to 99% confidence bounds. 
Now consider steady-state, first-order, autoregressive 
correlated errors as described by equations (32) where 
ui is normally distributed. In this casefis still normally 
distributed but with variance given by equation (37~). 
The corresponding confidence bounds are also given 
by equation (45) with a~ now evaluated from equation 
(37~). Confidence bounds on d(t), for independent or 
correlated errors, are developed in the same manner. 

The assumption of normally distributed errors in 

the preceding two cases is used to determine that fis 
also normally distributed. Once the distribution off 
is known to be normal, the confidence bounds can 
be established. However, even if the errors are not 
exactly normal, f will be nearly normal anyway as a 
consequence of the central limit theorem of statistics 
[17, p. 1671. Basically, the theorem states that the 
distribution off will be more normal than that of E 

and in the limit, as the number of measurements tends 
to infinity, 3 becomes exactly normal (of course, if E 
is normal thenfis exactly normal for any number of 
measurements) [19]. Fortunately, normality in f is 
achieved very quickly; 3 is significantly non-normal 
only if the errors are extremely non-normal and only 
a few measurements are taken [20, pp. 21-231. That 
is, relation (45) is not strongly dependent on the 
assumption of normal errors at all. We note that 
frequently extremely non-normal errors can be trans- 
formed to an approximately normal distribution with 
constant variance and then the preceding analysis is 
again applicable [20, p. 291. In the event of extremely 
non-normal errors which cannot be transformed to 
near normality, distribution-free confidence bounds 
may be developed [20, p. 731. 

5. RESULTS AND DISCUSSION 

To illustrate the application of the present method 
of analysis on the use of periodic B-splines for the 
solution of quasi-steady periodic linear IHCP, we 
consider a plate of thickness unity subjected to zero 
temperature at the surface x = 0 and to a periodic 
temperature variation in the form of a square-wave 
at the surface x = 1. Suppose no prior information is 
available concerning the shape of f(t). In this case, 
one might as well use uniform cubic periodic B-splines 
with full continuity conditions at the breakpoints as 
the basis forf(t); that is, choose 

L=4 (46a) 

f = a variable parameter (46b) 

Fi = evenly spaced intervals (46~) 

3, = 3 continuity requirements. (46d) 

We first examine the deterministic error involved 
in the estimation of the unknown surface temperature 
by the inverse analysis. In order to study the effect of 
the parameter f on accuracy, 30 evenly spaced exact 
temperatures at the centerline are chosen as the input 
data to the inverse analysis. Figure 1 shows the actual 
applied surface temperature in the form of a square- 
wave and the exact temperature measurements taken 
under quasi-steady conditions at the centerline 
x = xi = 0.5 of the slab. Figure 2 shows the estimated 
surface temperatures, computed using A* = f= 5, 15 
and 25 spline intervals, compared to the exact surface 
temperature. In view of equation (43a), the error in 
the estimated results is purely deterministic. Clearly 
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FIG. 1. Applied square-wave periodic surface temperature; 
exact interior temperature at x = 0.5; and 30 inexact simu- 

lated measurements at x = 0.5 with u =O.Ol. 

as the number of spline intervals is increased, the 
quality of the estimation improves. 

Next we consider the effects of random measure- 
ment errors on the estimated surface temperature. 
Due to lack of space we consider only the standard 
case of zero mean, constant variance, independent, 
normally distributed errors. The expected size of the 
stochastic error, sto (f), is indicated by the normalized 
standard deviation, u~/cr = a,,,(f)/o. Figure 3 illu- 
strates the effect of measurement errors on the esti- 

mated surface temperature for f = 5, 15 and 25. As 
the dimension (i.e. A* = fl of the basis forfis increased, 
the estimated interior temperature more closely fol- 

lows the measured data which contains error. There- 
fore, the sensitivity to measurement errors increases, 

as expected. 
Now consider inexact input to the inverse analysis. 

Thirty simulated inexact measurements at x1 = 0.5 
with u = 0.01 are used for the analysis as shown in 
Fig. 1. Since with increasing [ the deterministic error 
decreases (Fig. 2) while the average stochastic error 
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FIG. 3. Illustration of average stochastic error for cubic 
periodic B-splines with r= 5, 15 and 25 intervals and full 

continuity conditions. 

increases (Fig. 3), an optimal value of [ which will 
minimize the total error, is expected to lie between 

the extreme values of 5 and 25 intervals. According 
to criteria (31) this optimal number, c,,, is approxi- 
mately 16 and the corresponding estimated surface 
temperature is shown in Fig. 4(a). The r.m.s. estimated 
error, ,,/(SSE/N), calculated by taking f = 16 is 0.0096 
which differs from u = 0.0100 by 4%. Also shown in 
Fig. 4(a) are the 99% confidence bounds on!, based 
on equation (45). The approximate confidence bounds 
agree with the exact surface temperature except where 
the deterministic error is large as expected from 

equation (45). 

125-j 

, 
0 25mi 

I 

1 f(t) 

FIG. 2. Illustration of deterministic error for an applied square-wave surface temperature using cubic 
periodic B-splines with f= 5, 15 and 25 intervals and full continuity conditions. 
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FIG. 4. Optimal estimated surface temperatures for an applied square-wave surface temperature and 
inexact measured data using: (a) cubic periodic B-splines with full continuity requirements, (b) a Fourier 
series representation and (c) cubic periodic B-splines with dis~ontinuities specified at t = 0.25 and 0.75. 
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FIG. 5. Illustration of deterministic error for an applied square-wave surface temperature using a Fourier 
series representation using 5, 15 and 25 terms. 

We now compare the present method using a 
periodic B-spline basis forpto the use a Fourier series 
basis in the form 

Since a smooth B-spline representation has been 
specified (continuity through the second derivative), 
we expect the slightly more smooth Fourier series to 
produce results similar to the B-sphne results. Figures 
5 and 6 show the results analogous to those contained 
in Figs. 2 and 3, respectively, for the trigonometric 

basis as given by equation (47) for (2m + 1) = 5, 15 
and 25 terms. Inspection of Figs. 2 and 5 indicates 
the periodic B-spiine approach is at least as good as 
the Fourier series method in minimizing the deter- 
ministic error. Note that the oscillations near the 
discontinuities die out more quickly when periodic 
B-sphnes are used since continuity in the higher order 
derivatives is not required. Comparison of Figs. 3 and 
6 shows that the average size of the stochastic error 
is the same for both approaches. When data with 
measurement error is used, the optimal estimated 
surface temperatures, as selected by criteria (3 l), agree 
also as shown by Figs. 4(a) and (b). Therefore, when 
prior information about f(t) is not available and a 
smooth, uniform periodic B-spline basis is specified, 
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FIG. 6. Illustration of average stochastic error for a Fourier 
series representation using, 5, 15 and 25 terms. 

the present approach can effectively reproduce the 
Fourier series results. 

Consider now a situation in which the true surface 
temperature is known to have discontinuities. Sup- 
pose that the surface temperature of Fig. 1 is the 
result of a periodic on-off heating process for which 
the duration of each process is known. In this case, 
we incorporate this prior information into the B- 
spline basis by requiring breakpoints at t = 0.25 and 
0.75 with v = 0 continuity conditions. Figure 4(c) 
shows the results when inexact data is input to 
the inverse analysis with the selections f2 = 4, r= 3, 
& = (0,0.25,0.75,1.00) and ci = {4,0,0,4) chosen to 
best satisfy criteria (31). Clearly, applications with a 
known discontinuous surface temperature are better 
treated with a periodic B-spline basis than a Fourier 
series approach, as shown by Figs. 4(b) and (c). 
(Actually, criteria (31) indicated that even the current 
model with 6 = 4 and using only T= 3 is too flexible 
since it leads to a value of ,/(SSE/N) of about 0.0068, 
which is significantly less than u = 0.0100, for these 
selections of the parameters. In this case, the order of 
the spline functions, (E - I), should be reduced to 
further optimize the ~timation of f(t).) 

Finally, we consider an example in which prior 
information about the general shape of the unknown 
surface temperature,f(t), can be used with a periodic 
B-spline basis to achieve improved results over the 
sine-cosine representation through a reduction in the 
number of parameters in the model for f(t). In Fig. 
7(a) an arbitrary simulated periodic wall temperature 
variation with an abrupt change is illustrated. Suppose 
20 measurements with error level G = 0.1 are taken 
at x1 = 0.05 as shown in Fig. 7(a). We base our 

selection of the B -spline representation off(t) on the 
following prior knowledge about f(t). 

(1) A sharp temperature spike occurs between 
approximately t = 0.45 and 0.55. 

(2) Otherwise the temperature variation is smooth. 

The above information motivates the following B- 
spline basis 

I?=4 (48a) 

f= 5 (48b) 

fi = ~0,0.20,0~45,0.55,0.75,1.00} (48~) 

3, = {3,3,2,2,3f. (48d) 

Since sharp curvature is expected near t = 0.45 and 
at 0.55, continuity of the second derivatives is not 
required in relations (48). The B-spline results are 
shown in Fig. 7(b) while the Fourier series results are 
given in Fig. 7(c). The dimension of the B-spline basis 
given by equations (48) is N, = A* = 7 while the 
number of terms required by basis given by equation 
(47) to achieve the same degree of fit in terms of the 
SSE is 13. Since the Fourier representation is very 
smooth, more terms were required to fit the near 
discontinuity at t = 0.5 than the less smooth B-spline 
basis. The increased sensitivity of the Fourier series 
approach is evident from the broader confidence 
bounds in Fig. 7(c). Clearly the B-spline results are 
better than the Fourier series results since prior 
information aboutf(t) has been incorporated into the 
B-spline representation off(t) to reduce the number 
of parameters. 

6. CONCLUSIONS 

The periodic B-spIine/integral transform approach 
has been developed to solve linear inverse heat 
conduction problems involving a periodically varying 
unknown surface temperature at one of the boundary 
surfaces. Problems involving discontinuities or abrupt 
variations in the surface temperature can readily 
be handled with the present method. When some 
information is available regarding the general func- 
tional form of the applied surface temperature, such 
information can be incorporated in the B-spline basis 
to reduce sensitivity to measurement errors. The 
method is also capable of handling smooth variations 
in the applied surface temperature as effectively as 
the Fourier series approach. 
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APPENDIX 

The following type of integral appears twice in equation 
(15b) 

s 

2 
exp Cr(t - r)lBi, k(r)dr (Al) 

(1 

where (k - 1) is the order of the spline functions. Lets denote 
the knot sequence defining the B-splines [l5, pp. 119, 3211. 
Since Bi. &t) is a different polynomial on each interval 
($+j-*9 Si+j),i= 1,2,..., k, split up integral (Al) as 

jt~[~~~~~:~~~, 

exp Cr(t - v)l gi, &) dr (A2) 
II 

where 6 is a small number. Define 

zzj I min(t,, si + j - 6) 

Zrjmmax(tl,si+j_r) 

and consider each integral 

(A3a) 

(A3b) 

appearing in integral (AZ) separately. Since Bi,&) is a 
continuous function for zlj 2 t 5 zzj, integral (A4) can be 
integrated by parts as 

s I* 1 - ;exp Crfr - @I $ Bi.&)dr. fA5) 
211 
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The derivative of the B-spline is evaluated from the recursion The recursion formula (A7) is started from the values 
formula [IS, p.1393 

$Bi,AC) = (k - 1) 
4, - 10) exp [r(t - I))] B,, I(t)dt 

si + )r - 1 - si 

Hence = ;exp [rft - v)] 
mi”,r2,.“,+, - dl 

s 

m*r@,,.s,) 
=I2 

evlr(t - UN UtVt = i 
11, 

exp Cr(r - oll4, dt) if min (.rajr si + , - 6) > max(zij,si) (Aga) 
=I, z*, 

k-i 

1‘ 

22, = 0 otherwise. (A8b) 
- 

si + x - , - si *,, 
explrft - 414 L - i(r) dr 

Equations (A7) and (AS) provide a complete recursion 

3 

relation for the evaluation of integral (A4). Expression (A2) 
f exp [r(t - 41 Bi + I. x - z(t) dt (A3 is then used to compute integral (Al). 

METHODE B-SPLINE PERIODIQUE POUR LE PROBLEME INVERSE DE LA 
CONDUCTION PERIODIQUE ETABLIE 

Rbum&-Une approche basee sur l’utilisation de la methode B-spline et sur la transform&e integrale est 
proposee pour resoudre les problemes hntaires inverses de la conduction thermique p&iodique ttabhe. Les 
approches prccedentes ba&es sur une reptisentation en s&e finie de Fourier de la condition inconnue sur 
la surface conviennent mieux aux variations lentes. Mais en utilisant une representation B-spline, des 
probltmes avec des discontinuit~s ou des variations rapides de ia condition B la surface peuvent itre trait&. 
La souplesse de la base B-sphne fournit une info~ation concernant le comportement fonctionnel gknkraf 

de la condition de surface pour Ztre mieux introduite dans le modtle. 

PERIODISCHES B-SPLINE-VERFAHREN ALS GRUNDLAGE ZUR BESCHREIBUNG 
QUASISTATIONARER, PERIODISCHER, INVERSER WARMELEITVORGANGE 

Zuaanuneofasaung-Es wird eine Methode zur Liisung quasistationlirer, periodischer, linearer, inverser 
Wlrmeleitvorgiinge mit Hilfe period&her B-Splines und der Integral-Transfonnationstechnik vorge- 
schlagen. Ein frtiher vorgestelltes Verfahren, bei dem die unbekannte OberIIiichenbedingung mit Hilfe einer 
Fourier-Reihe dargestellt wurde, eignet sich sehr gut, urn zeitliche Anderungen der Oberfhichenbedingung 
anzupaasen. Durch Vetwenden der B-Spline-Methode k&ten jetzt such Unsteti~eiten oder pldtzliche 
~nde~ng~ der O~~~chen~in~ng ohne ~hwie~gk~ten behandelt werden. Die ~we~chkeit des B- 
Spline-Verf~rens erlaubt es, mehr Vorabinfo~ation (beziighch des allgemeinen Verhahens der Ober- 

~chen~din~g) besser in das Modeif zu integrieren. 

IIEPHO~HYECKRH B-CI-IJIAHH Qn5l PEIIIEHIHI KBA3MCTAHHOHAPHbIX 
I-IEPMOJJMYECKHX 06PATHbIX 3AJIAY TEIIJIOIIPOBO~HOCTH 

Annoranrm-Meron, OCiiOBaHHbIii Ha HCnOJIb30BaHHH nepHOoul%cKnX B-CnnaiiHoB H MeToLlHKe UHTer- 
panbnoro npeo6pa3oaaHw, npe&naraeTcr &an pemeHHa Ks;uHcraqnoIiapHbIx nepHonuwcKHx neneii- 

HbIX 06paTHbIX 3aAa'l TenJIOnpOBOAHOCTH. Parme npHMensi?ureecn nonxonbr 6asupyroTca na 
npeACTaBJTeIiHEi HeH3BeCTHbIX YCAOBHii Ha nOBepXHOCTH B BEiAe KOHeYHO~O pKl&a tD~bC,XOpOLUO COOT- 

BeTcTBjWT MOIfOTOiiWOMy H3MeIieHHIO SO BpeMeHH yCJiOBHk Ha flOBepXHOCTH. ~CllOJlb3OBaHRe B- 
cnnafinoe naer fi03hroznrocrb ~@&KTHBHO penraTb 3aAaw c pa3pbraHbI~~ H pe3KO ~3MeHK~~~M~cK 

YcAOB~~M~ Ha nOBepXHoC% YHHBe~~bH~b Ekn.aakrios 1103B0flSeT 6onee aAeKaaTH0 MOAMH 

KCIIO,ib3OBaTb H~~pMa~~ 06 yC3tOnHaX Ha nOBepXnocTn. 


